李尚陽

博士后

Email:lishangyang@@gdiist.cn

 

個人簡介:
2019年本科畢業于北京師范大學物理系,2024年博士畢業于北京大學前沿交叉學科研究院。研究方向為計算神經科學和機器學習,一方面關注通過計算建模的方式回答大腦信息處理原理和解析神經疾病機制;另一方面關注機器學習算法研究,重點聚焦于大模型相關技術和模型研究,結合神經醫學領域特點研發神經醫學大模型。發表多篇學術論文并擔任神經科學領域期刊和機器學習國際會議審稿人。


本實驗室長期招收機器學習相關背景全職博士后以及數學、統計、生物醫學工程和計算機方向實習生,實習優秀者有全職崗位開放。


研究方向: 

計算神經科學與機器學習


代表性論文:

[1] Subgraph Federated Learning with Information Bottleneck Constrained Generative Learning (Shangyang Li, and Jiayan Guo) (ACM Transactions on Knowledge Discovery from Data, TKDD 2025)

[2] Empowering Cross-Patient Adaptive-Length Epilepsy Diagnosis with ECNorm: A Channel-wise Approach (Kaixuan Wang, Tao Lu and Shangyang Li) (CogSci 2025, 通訊作者,CCF-B)

[3] Unified Fusion Network Model for EEG Signals (Chunchang Shao and Shangyang Li) (CogSci 2025,通訊作者,CCF-B)

[4] Harnessing Pre-trained Language Models for EEG-based Epilepsy Detection (Tao Lu, Shangyang Li) (ICME 2025,共同第一作者兼通訊作者,CCF-B)

[5] Spindle oscillation emerges at the critical state of the electrically coupled network in thalamic reticular nucleus (Shangyang Li, Chaoming Wang and Si Wu) (Cell Reports 2024)

[6] BrainPy, a flexible, integrative, efficient, and extensible framework for general-purpose brain dynamics programming(Chaoming Wang, Tianqiu Zhang, Xiaoyu Chen, Sichao He, Shangyang Li and Si Wu) (eLife 2024)

[7] BrainPy: a differentiable brain simulator bridging brain simulation and brain-inspired computing (Chaoming Wang, Tianqiu Zhang, Hongyaoxing Gu, Sichao He, Shangyang Li and Si Wu) (ICLR 2024)

[8] An Information Theoretic Perspective for Heterogeneous Subgraph Federated Learning (Jiayan Guo*, Shangyang Li* and Yan Zhang) (DASFAA 2023,共同第一作者兼通訊作者,CCF-B)

[9] Graph Adversarial Contrastive Learning (Jiayan Guo*, Shangyang Li*, Yue Zhao and Yan Zhang) (DASFAA 2022,共同第一作者兼通訊作者,CCF-B)


神經醫學大模型智能聯合實驗室